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Abstract

The solar industry in the United States typically uses a credit score such as the FICO score as an

indicator of consumer utility payment performance and credit worthiness to approve customers for new

solar installations. Using data on over 800,000 utility payment performance and over 5,000 demographic

variables, we compare machine learning and econometric models to predict the probability of default

to credit-score c utoffs. We compare these models across a variety of measures, including how they

affect consumers of different socio-economic backgrounds and profitability. We find that a traditional

regression analysis using a small number of variables specific to utility repayment performance greatly

increases accuracy and LMI inclusivity relative to FICO score, and that using machine learning techniques

further enhances model performance.Relative to FICO, the machine learning model increases the number

of low-to-moderate income consumers approved for community solar by 1.1% to 4.2% depending on

the stringency used for evaluating potential customers, while decreasing the default rate by 1.4 to 1.9

percentage points. Using electricity utility repayment as a proxy for solar installation repayment, shifting

from a FICO score cutoff to the machine learning model increases profits by 34% to 1882% depending on

the stringency used for evaluating potential customers. This research shows that it is possible to extend

solar to a larger number of qualified applicants with lower or no credit scores, while at the same time

decreasing default risk, thus opening up access to an untapped, low-risk market segment.
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1 Introduction

Most solar companies currently use credit scores to determine whom to approve for solar installations. De-

spite their widespread use, credit scores consider many aspects of a consumer’s credit history that are not

directly related to utility payment; therefore, the FICO score is an imperfect proxy for predicting utility

payment performance. Furthermore, approximately 5 million low-income consumers are credit invisible or

have unscored records, representing 45% of consumers in low-income neighborhoods [5]. This implies that

traditional credit score cutoffs exclude people with low credit scores and those with insufficient credit history.

Simultaneously, Low-to-Moderate Income (LMI) households bear a disproportionate energy burden, paying

on average three times as much for energy as wealthier households [6]. Thus, by depending on credit scores

as the sole indicator of consumer payment performance, the community solar market reproduces existing

inequalities and limits its own potential for growth by excluding potential consumers.

The goal of this research is: (1) to develop an alternative prediction model of default based on machine

learning algorithms, specifically LASSO, SVM, and random forests; and (2) to compare its overall forecasting

performance, as well as its implications for LMI consumers, to traditional credit metrics. We do so by

developing a model that predicts the probability of non-delinquency of utility bill payments using a large

data set of utility repayment and other financial data obtained from a credit reporting agency (CRA). We

find that a traditional regression analysis using a small number of variables specific to utility repayment

performance greatly increases accuracy and LMI inclusivity relative to FICO score, and that using machine

learning techniques further enhances model performance. Our preferred model increases the number of LMI

applicants approved by 1.1% to 4.2% depending on the stringency used in evaluating potential customers,

while decreasing the default rate by 1.4 to 1.9 percentage points. Our analysis shows that it is possible to

extend solar to a larger number of qualified applicants with lower or no credit scores, while at the same time

decreasing default risk, thus opening access to an untapped, low-risk market segment.

The paper proceeds as follows. Section 2 provides a broad review of the community shared solar (CSS), its

current qualifying mechanism, and of the use of alternative credit qualifying scores across various industries.

Section 3 describes the data set and data processing. Section 4 outlines the models underlying the prediction

models. In particular, we use traditional regression methods and machine learning techniques on account-level

payment performance, financial, and demographic data to predict the probability of delinquency. Section 5

assesses the models developed in Section 4 by comparing to FICO based on accuracy, default rates, and LMI

inclusion. Section 6 explains the analysis of profitiability, which is followed by the Conclusion in Section 8.

2 Literature Review

2.1 Community Shared Solar

Community shared solar provides a solution to expand solar access to consumers currently locked out of the

rooftop solar market. In a community shared solar project, individuals subscribe to an off-site solar farm

from which they receive credits on their electricity bill. This model is particularly attractive for those who

have explored rooftop solar but are not eligible. Approximately 80% of Americans are currently locked out

of the solar market. This includes renters, households with unsuitable roofs, and those not able to afford the

high cost of installing rooftop panels. Through community solar, customers have access to renewable energy
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and savings without needing to invest in rooftop solar. According to industry estimates, the community

solar market is expected to boom in the coming years, with community solar capacity in the US expected to

reach as much as 11,000 MW by 2020, compared to 250 MW in early 2017, and just 1 MW of production in

2014 [4, 7, 9, 10].

2.2 Credit Score Requirements for Community Shared Solar

Community solar has the potential to expand renewable energy access to a much wider demographic than

rooftop solar. However, the community solar market is still developing and thus subject to considerable

uncertainty within the financial community. In many cases, financiers require that solar developers vet

customer credit scores in order to mitigate perceived subscription payment risk. Oftentimes, developers set

a minimum score of 700 on the FICO scale. These high credit requirements exclude a significant portion of

the population, yet there is little evidence that FICO scores can accurately predict defaults on community

solar payments in the same way as they predict defaults on loans.

Additionally, the direct correlation between credit scores and income results in the disproportionate

exclusion of LMI households from the community solar market [8]. Credit scores are developed for consumers

actively participating in the banking and credit system, which naturally favors higher-income consumers.

While the exact formulas for calculating credit scores are industry secrets, the score is determined based on

five categories of information: 1) payment history, 2) utilization ratio (the amount owed vs. the individual’s

maximum credit limit), 3) length of credit history, 4) recent activity, and 5) how much debt remains unpaid

[26]. Data for each of these categories is collected from a variety of types of credit, including mortgages, credit

cards, auto loans, student loans, etc. A lack of ability to engage with these systems leads to credit scores

that are often inadequate to participate in community solar. This affects the 56% of American consumers

who have subprime credit scores [3].

While some are excluded from mainstream credit because their credit score is too low, many are denied

access because their credit score is nonexistent. In order to investigate groups excluded from mainstream

credit, the Consumer Financial Protection Bureau has defined the terms credit invisibles and credit un-

scorables; credit invisibles include individuals without any records with national credit rating agencies, and

unscorables include those with thin credit files or stale records [5]. The same organization estimates that in

2010, 26 million Americans were credit invisible while an additional 19.4 million were unscorable [5].

LMI households are also disproportionately more likely to be unscored than their wealthier counterparts.

Nearly 50% of low-income consumers and 30% of moderate income consumers are unscored, compared to

only 10% of upper income consumers [5]. Lenders generally consider consumers without credit scores to be

high risk [8]. This means that many customers without credit scores are subject to predatory lenders who

charge both high interest rates and high penalty fees.

The exclusion of LMI households from community solar is even more impactful as these households

stand to benefit the most from subscription-model community solar. A 2016 report cited that the median

energy burden for households with less than 80% of their area median income was 7.2%, while non low-

income households had a median energy burden of 2.3% [6]. In other words, the energy burden among LMI

households is disproportionately higher than the total population. Worse yet, there is evidence that LMI

households could be included in community-solar projects without additional risk to the investors of these

developments.
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2.3 Utility Bills as Proxies for Community Shared Solar Payments

This paper hypothesizes that FICO scores and other traditional credit score indicators are an imperfect

predictor of community solar payments, and that utility payment history can better predict the risk of com-

munity solar payment default. This study has chosen to use utility payment history rather than community

solar subscription payment history for several reasons. Since the market is still developing, there is both

limited historical data on community solar payments and inherent selection bias in the existing data. The

selection bias stems from the existing high FICO requirements that make it impossible to assess repayment

rates of households with lower FICO scores. Therefore, this analysis draws from the assumption that utility

payment history can serve as a proxy for community solar subscription payments.

Since community solar payments and utility payments are generally similar in amounts, we hypothesize

utility and community solar payments will be adequate proxies for one another. Energy spending is a

necessary good for most consumers, meaning that it tends be one of the first household expenses to be paid.

Status quo bias suggests that customer prioritization of electric utility bills will extend to community solar

energy bills as well.

Another argument that supports the use of utility payment history as a proxy for community solar is

the potential for bill consolidation. A few states with emerging community solar markets are considering

legislation that would consolidate utility and community solar subscription bills. If community solar charges

appear on a customer’s utility bill, then consumers will treat utility bills and community solar bills exactly

the same. Therefore, for the purposes of this study, we assume a close proxy relationship between community

solar subscription payments and electric utility bill payments.

2.4 Alternative Credit Metrics in Industry

Alternative credit scoring mechanisms would provide value in other industries as well, such as student loans,

vehicle purchases, mortgage applications, credit card applications, and a number of other industries which

rely on the existing FICO credit score. Incorporating alternative data can generate credit scores for those

currently without scores. For example, LexisNexis has developed the RiskView Score, an alternative credit

metric, which scored nearly 10% of the sample that did not have a score previously [25]. Another alternative

credit metric, Link2Credit, created scores for 19 million previously unscored records. In 2012, the Policy and

Economic Research Council (PERC) conducted a study on the impact of alternative data on credit scores

using both non-financial tradeline data and utility data. The study found that 74% of sampled customers

that were previously unscorable could be scored using alternative data [28]. Alternative data can therefore

create a creditworthiness metric to extend credit to those without scores.

In addition to creating scores for the unscored, alternative data increases the efficacy and precision of

traditional credit scoring. The RiskView Score improved the segmentation of consumers within credit ranges,

allowing for expanded and more precise lending. LexisNexis used a cross section of traditional credit scores

and the RiskView Score to determine which consumers within each range of credit scores were higher risk

borrowers than others [8, 25]. Alternative data improves the precision with which credit rating agencies can

measure creditworthiness, which in turn can extend credit beyond traditional scoring boundaries without

negatively impacting bill payment rates. A 2015 PERC study found that non-financial utility and telecom

delinquencies were predictive of future mortgage, bank card, and public record delinquencies [27]. Empirically,

alternative data has successfully predicted financial default.
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Several national credit agencies have created products using alternative data. The aforementioned

Link2Credit score uses phone payment history and other public record metrics, while Fair Isaac developed a

FICO expansion score including debit data, utility data, and public record attributes [25]. Equifax marketed

their Advanced Energy Plus score to use energy payment data to augment thin file consumers’ credit history.

Alternative credit metrics are more useful if they are widely trusted and usable in the finance community.

While the array of alternative credit products does not signify widespread use, it certainly signals market

interest and credibility of such products.

2.5 Alternative Credit Metrics in Academia

In addition to the industry-led initiatives, there has been other research in academia exploring alternative

credit scoring mechanisms for various other purposes beyond the solar industry. There has been literature

which uses regression discontinuity to display the moral hazard effect induced when private lenders employ

strict FICO Score cutoffs [12,14,16,18,24]. In other words, private lenders are more likely to offer services to

customers with a FICO score just above a certain threshold than customers below the same threshold. In an

analysis of subprime mortgage loan contracts in the United States, Keys et. al show that such securitization

practices adversely affects the incentives for lenders to carefully screen borrowers [15].

To address the issue, a number of researchers and academics have used statistics and machine learning

to provide an alternative credit scoring mechanism. Nikravesh uses fuzzy query and ranking as a method

of predicting the default risk associated with lending to a new customer, and to serve as an alternative to

the FICO score [22]. Yu et. al propose a multistage neural network ensemble learning model to predict

credit risk [20]. Huang et. al investigate a data mining approach with support vector machines as a credit

scoring model, which required a long training time [11]. Wang et. al experiment with fuzzy SVMs and

traditional SVMs for predicting credit risk to show that the fuzzy SVM achieves better generalizability by

being less sensitive to outliers than alternative machine learning methods [32]. Antonakis et. al analyzes the

predictive ability of several machine learning approaches, including Näıve Bayes Rule, k-Nearest Neighbors,

classification trees, and neural networks, for screening credit applicants [2]. Khandani et. al use generalized

classification and regression trees to classify the rates of credit-card holder delinquencies and defaults, and

use their results to study nonlinear relationships that are not captured by traditional credit scores [17].

Wang et. al demonstrate the feasibility of using bagging and random subspace, together with Support Vector

Machines, as an alternative method to predict credit risk assessment [29, 30]. Wang et. al also compared

the predictive ability of logistic regression analysis (LRA), linear discriminant analysis (LDA), multi-layer

perceptron (MLP), and radial basis function network (RBFN), with decision trees with and without bagging

as alternative methods of credit scoring [31]. Their decision trees model demonstrated some of the lowest

performance ratings due to noise, while this paper found a decision trees model to be the most accurate.

Finally, Kruppa et. al also demonstrated the accuracy of random forest, k-Nearest Neighbors, and bagged

k-Nearest Neighbors to predict consumer credit risks [19]. Kruppa et. al found results consistent with those

presented in this paper, demonstrating that the random forest algorithm showed higher accuracy rates than

the alternative methods tested. In addition to those listed, there has been other research in using machine

learning techniques to assess credit risk. However, the other literature was focusing on credit risk from a

general perspective, and did not identify the impacts for lower-income customers or on the solar industry

specifically.
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Testing sample US average

Income (median) $55,000-$59,999 $55,322
College 19.3% 30.3%
Female 26.6% 50.8%
Black 10.5% 13.3%

Hispanic 8.4% 17.8%

Table 1: Descriptive statistics: demographic variables

3 Data

3.1 Significance of Data

This study uses account-level credit score and monthly payment performance between December 2009 and

November 2016, obtained from a credit reporting agency (CRA) along with other financial and demographic

data. Because we are interested in using the data to predict payment performance in the last 12 months

of the data, we use records with at least 24 months of consecutive utility payment performance data in the

period (December 2014 to November 2016).

The full universe of data from the CRA include 8.3 million records, of which we procured the 10.6%

(872,382) with 24 consecutive months of payment history for an individual utility account. Of those indi-

viduals with a full history, 61.1% (535,931) have no negative record and 38.9% (341,372) have at least one

negative record. Here, we define a negative record as any delinquency of at least 30 days. It is important to

note that utilities are more likely to report a delinquent account, and therefore that such accounts may be

over-represented in the set of accounts with 24 months of consecutive payment data.1

3.2 Descriptive Statistics

In addition to payment history, we use demographic data, including features such as home ownership, length

of residence, level of education, and age. In order to see whether the sample differs from the population

of U.S. utility account holders, we compare to national averages from the Census in Table 1. We see that

the sample is more or less representative in terms of annual income, but it under-represents women and

minorities. However, it is important to note that the utility account holders across the United States will

most likely differ from the entire U.S. population.

Looking across geographies in Table 2, a few observations bear mentioning. First, we see that urban,

suburban, and rural households are all well-represented in the sample. Looking across regions, however,

we see that the majority of observations come from the East North Central region (82.6%). Most of these

observations are from Wisconsin (74.1%), although this is of the 64.3% of the sample that report the state

of residence. Though this may lead to some concern over the external validity of this study, this would

only affect the accuracy of the alternative scoring mechanisms if Wisconsinites systematically differ from the

rest of the country in terms of the relationship between past and future payment performance. Ther eis

no intuitive explanation as to why this should be the case, and we confirm this further below in Table 4

1Since we do not have access to the full universe of Experian data, we have also constructed a sample requiring 36 months
of data to illustrate that the effect of restricting the data in this manner, assuming that moving from an unrestricted sample
to the sample requiring 24 months of data has a similar effect to moving from this sample to an even more restrictive sample
requiring 36 months of data.
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Population density
% N

Rural areas 26.9 234,181
Smaller suburbs and towns 38.5 335,960

City and surrounds 34.6 302,047
Census division

% N
New England 2.6 14,710

Middle Atlantic 2.6 14,309
East North Central 82.6 463,04
West North Central 0.9 4,992

South Atlantic 8.3 46,367
East South Central 0.7 3,814
West South Central 0.3 1,626

Mountain 0.6 3,557
Pacific 1.5 8,314

State
% N % N

Alabama 0.2 915 Montana 0.0 47
Alaska 0.0 35 Nebraska 0.1 292

Arizona 0.2 918 Nevada 0.1 405
Arkansas 0.0 117 New Hampshire 0.0 90
California 0.3 1,640 New Jersey 0.1 560
Colorado 0.1 435 New Mexico 0.1 738

Connecticut 2.5 13,942 New York 1.7 9,505
Delaware 0.0 99 North Carolina 0.9 5,201

District of Columbia 0.0 66 North Dakota 0.0 23
Florida 0.8 4,201 Ohio 1.3 7,266
Georgia 0.7 4,175 Oklahoma 0.0 126
Hawaii 0.0 49 Oregon 0.4 2,331
Idaho 0.2 878 Pennsylvania 0.8 4,244

Illinois 2.2 12,463 Rhode Island 0.0 112
Indiana 2.0 11,162 South Carolina 4.1 23,197

Iowa 0.1 725 South Dakota 0.0 42
Kansas 0.0 78 Tennessee 0.4 2,255

Kentucky 0.1 315 Texas 0.2 1,209
Louisiana 0.0 174 Utah 0.0 109

Maine 0.0 73 Vermont 0.0 52
Maryland 0.1 650 Virginia 0.2 909

Massachusetts 0.1 441 Washington 0.8 4,259
Michigan 3.0 16,680 West Virginia 1.4 7,869

Minnesota 0.6 3,536 Wisconsin 74.1 415,473
Mississippi 0.1 329 Wyoming 0.0 27
Missouri 0.1 296

Table 2: Descriptive statistics: geography
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by showing that the accuracy of the alternative scoring mechanisms marginally increases when running the

analysis on a sample excluding Wisconsin.

3.3 Data Processing

Our data set has 872,382 data points and 5,022 variables. We use the entire data set to improve the accuracy

of our model and to classify all the records in our data set. This involves three main processing steps. First,

we randomize the order of the examples in the data set by shuffling the rows. Second, since the machine

learning algorithms require there to be no missing values, we replace each missing value with a zero and

generate a corresponding indicator variable for each variable, taking on the value 1 if the value is missing.

We also include variables with existing numeric missing-value codes in this process (e.g. FICO score).

We then divide the full data set into a training data set, a validation data set, and a testing data set,

comprising of 60%, 20%, and 20% of the data, respectively. We use the same data sets across all of the

models in order to appropriately compare the accuracy rates between them. For the traditional regression

analysis, we combine the training and validation data sets to estimate the models.

4 Developing the Alternative Scoring Mechanism

We now turn to developing the preferred alternative to traditional credit scores created specifically to evaluate

customers for community solar participation, which leverages the rich data set on utility repayment history.

We develop a number of alternative models that use the 12 months of data prior to December 2015 to predict

the likelihood of being delinquent at least once in the following 12 month period (December 2015 to November

2016). The models, which we test in section 4, vary on two dimensions. First, we develop alternatives using

a traditional regression model as well as machine learning techniques. Second, we vary the definition of a

delinquency to be used as the dependent variable between a delinquency of greater than 30 days and greater

than 90 days.

4.1 Traditional Regression Analysis

We start by estimating a set of models with a small number of variables, which we deem to be the most

relevant for the probability of being delinquent in a given 12-month period. Using this regression method

may present an improvement over using FICO alone. Unlike FICO, model would specifically predict the

probability of delinquency in utility payments, rather than general financial habits, which may include many

other categories not directly relevant for utility payment performance such as credit card debt and installment

loans.

In particular, we estimate linear probability and probit models of the form:

Pr(Dit) = α+ γ1D
30
it−1 + γ2D

60
it−1 + γ3D

90
it−1 + γ4FICOit−1 + γ5noFICOit−1 + X′itβ, (1)

where Pr(Dit) is the probability of at least one delinquency for individual i in the 12-month period using

the 30-day or 90-day definition depending on the specification. The various Dj
it−1 variables are indicator

variables for at least one delinquency of more than j days for the individual in the previous 12-month
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NotCurrent >90DaysPastDue

LPM Probit LPM Probit

Regressor (1) (2) (3) (4)

FICO -0.00105*** -0.00279*** -0.00139*** -0.00828***

(5.49e-06) (2.51e-05) (4.27e-06) (4.00e-05)

FICOBlank -0.574*** -1.316*** -0.723*** -4.237***

(0.00338) (0.0213) (0.00291) (0.0274)

30DaysPastDue 0.147*** 1.483*** 0.479*** 2.209***

(0.00122) (0.0172) (0.00196) (0.0121)

60DaysPastDue -0.00688*** 0.104*** -0.110*** -0.0498***

(0.00124) (0.0130) (0.00204) (0.0107)

>90DaysPastDue 0.0886*** 0.891*** 0.421*** 1.664***

(0.00101) (0.00941) (0.00128) (0.00831)

NewMover 0.0394*** 0.129*** -0.00324 -0.0176

(0.00427) (0.0156) (0.00246) (0.0257)

HomeOwner -0.0479*** -0.290*** -0.0358*** -0.205***

(0.00102) (0.00624) (0.000912) (0.00694)

Multifamily 0.0809*** 0.362*** -0.0171*** -0.0872***

(0.00130) (0.00702) (0.000992) (0.00823)

Constant 1.415*** 2.544*** 1.138*** 4.154***

(0.00384) (0.0190) (0.00330) (0.0264)

N 697,762 697,762 697,762 697,762

R2 0.204 0.233 0.758 0.754

Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

All specifications also include indicator variables for missing demographic

variables (NewMover, HomeOwner, Multifamily).

Table 3: Regression models of probability of delinquency with limited variables and varying delinquency
definitions

period. FICO and noFICO represent the individual’s FICO score and an indicator variable equal to one

if that individual does not have a FICO score. The matrix X contains various demographic and housing

characteristics, which in our preferred specification presented in Table 9 includes a binary variables for new

movers (within the past 12 months), home ownership, and residence in a multifamily building. We estimated

a number of other specifications, including those with the following demographic characteristics in addition

to the aforementioned: a binary variable for college education and a categorical variable for income in $10K

increments up to $120K+. These only marginally increase the R-squared of the model while adding in

variables that are at odds with the LMI inclusion goal. The full set of specifications are presented in the

appendix.

The regression models are presented in Table 9 using a 30 day definition for delinquency in columns (1)

and (2), and a 90 day definition for columns (3) and (4), using both linear probability model and probit

specifications. For the probit models, we report the marginal effects at the means of continuous variables

and for binary variables, the average effect of moving from 0 to 1. The variables for days past due indicate
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whether, at any point in the past 12 months, the account was 30, 60, or >90 past due (these variables are

not mutually exclusive).

Immediately, we see that the coefficients on FICO score are negative and highly significant across spec-

ifications as expected. Looking at the linear probability models, all else held constant, a 10-point decrease

in a FICO score would increase the probability of an account being 30 and over 90 days past due by 1.1 and

1.4%. Interestingly, however, having no FICO score seems to have a negative effect on the likelihood of being

delinquent (a positive effect on payment performance). One plausible explanation is that those with poor

payment performance and with no credit score already have their risk captured by the three delinquency

variables, which are, for the most part negative and highly significant.

Interestingly, using the less strict 90 day definition for a delinquency as the dependent variable captures a

much greater share of the variation than the 30 day definition (20.4% vs 75.8%). This is likely due to the fact

that 30 day delinquencies are a much noisier measure of financial habits than delinquencies of greater than

90 days. For instance, a 30 day delinquency could be due to a one-time error such as a misplaced envelope,

whereas a 90 day delinquency is more likely to be an indicator of being a risky consumer. This intuition is

consistent with the fact that being a new mover only has a statistically significant effect in the 30 day models.

4.2 Machine Learning Techniques

We classify records with several different machine learning techniques in order to compare the performances

of each one and select the one with the highest accuracy rates. First, we use different algorithms using a

smaller data set, as described below. Since there are both continuous and categorical variables, it is important

to normalize the data. We try three different normalization techniques in order to find the one that gives the

best fit. We then perform dimensional reduction on our entire data set to prioritize the important features

and create a condensed data set. We test several different machine learning techniques, such as LASSO,

support vector machines, and a random forest algorithm using the condensed data set.

4.2.1 Creating Architectures on a Subset

Instead of creating all of our models using the entire data set, we use samples from the whole data. In

particular, we take a subset of 10,000 samples and 13 features to build our algorithms. This enables us to

conduct tests more rapidly. We incorporate the entire data set after we perfect our methodology.

In order to obtain a high level of accuracy, we normalize the data by rescaling using the following equation:

x′ =
x− xmin

xmax − xmin
. (2)

This yields better accuracy, as it gives only non-negative values, and performed with the highest accuracy

on the linear regressions, relative to the following alternatives:

x′ =
x− µ
σ

, (3)

x′ =
x− µ

xmax − xmin
. (4)
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4.2.2 Dimensional Reduction Using LASSO

In order to reduce computing times, we perform dimensional reduction on the large data set to identify

the important features and use the most significant variables. This agrees with the economic intuition

of the data set. While some of the demographic variables hold economic significance (e.g. home market

value, income code, and number of cars owned), other variables seemed extraneous and unnecessary for our

analysis (e.g. whether the individual was a movie collector, type of preferred vacation, and women’s suit

size). Removing these parameters speeds up the computing time, maintains relevance of the parameters,

and increases accuracy of the model. This also decreases the data requirements for the alternative scoring

method. We use LASSO for feature selection and as a shrinkage method, to reduce the size of the data set

we would use to train the model, identify the most important features, and use them to conduct the rest

of the analysis [21]. We perform LASSO on the entire data set using remote computing, with a λ = 0.05,

yielding 20 important features. The most important features were the deliquency in the previous time period,

values from the payment grid, and the amount past due. The top 5 variables and their respective weights

are displayed in Table 4.2.2.

Var Name Meaning Absolute Value of Weight

CURR KEYCD 24 Current on Utility Payments in previous year 0.3577

PAYMENT GRID81 Payment history grid 0.0359

ACCT PAST DUE AMT Amount Past Due 0.0292

DELQ DT 1 BLANK Most recent delinquency date unavailable 0.024654

DELQT DT 2 BLANK Second most recent delinquency date unavailable 0.008477

Weights for 5 Most Important Values

All of these variables make intuitive economic sense, and should be useful in calculating the probability

of delinquency for an individual. It is interesting to note that some of the most important features were as

expected, such as delinquency in the last year and FICO score, while some other significant financial data we

had not initially predicted would be so important. After looking through the top 20 features, we noticed that

all of the key features described financial payment history, and none of them were demographic variables.

4.2.3 Support Vector Machines

Support Vector Machines (SVMs) are a method of supervised machine learning which uses labeled training

data to formulate the optimal hyperplane that can classify new data points [23]. SVMs create decision

boundaries between different labels (in our case, delinquent and not delinquent) in high dimensional spaces [1].

This means that if there is no clear decision boundary in a two-dimensional place, SVMs can extrapolate to

higher dimensions to create a hyperplane that can be used to classify various data points. The dual form of

linear SVMs is specified below, where xi represents the input parameters, yi is the decision variable, and αi

is the dual variable and related to the weight vector.

max
α
−1

2
||
∑
i

αiyixi||2 +
∑
i

αi, (5)

∑
i

yiαi = 0, (6)
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NotCurrent >90DaysPastDue

Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy

ML Method (1) (2) (3) (4)

LASSO 91.14 % 90.37% 96.26% 96.05%

SVM 94.44% 89.71% 99.02% 87.82%

Random Forest Algorithm 100% 97.49% 100% 98.99%

Random Forest without WI 100% 97.85% 100% 99.05%

Table 4: Accuracy Rates for Machine Learning Algorithms with Different Definitions of Delinquency

0 ≤ α ≤ C. (7)

The algorithm will perform certain transformations on the data points, known as kernels, to translate

it into higher dimensions. Kernels are useful tools to express complicated feature functions in a simple

way. Beyond the linear kernel, the Gaussian radial basis function (rbf) kernel is a popular kernel function.

The Gaussian RBF kernel has special properties which allows it to classify correctly almost all of the time.

However, one must be wary of overfitting when using the Gaussian RBF Kernel, which is clearly stated in

Equation 8.

K(x, x′) = exp(−γ||x− x′||2). (8)

A regularization term, C, is added to prevent overfitting and accommodate cases when the data is linearly

inseparable. The regularization parameter represents the importance of the training errors. As the regu-

larization parameter, C, increases, the margin width becomes smaller, and therefore there are less margin

violations. An increase in the regularization term correlates with a greater emphasis on margin violations,

and the margin becomes tighter around the decision boundary. Thus, the number of support vectors, and

violations, decreases as C increases. However, it is imperative to consider the tradeoff between accuracy and

robustness, as it important to prevent the algorithm from overfitting to the training data.

The γ term reflects a certain margin of error surrounding the decision boundary. A small gamma corre-

sponds to a decision boundary that underfits the data. In parallel, a larger gamma value tends to overfit the

data.

We tune the hyperparameters, C, γ, and the kernel type, on the validation data set. The SVM we use has

the following specifications: C = 10, γ= 0.1, and it utilizes a radial basis function (rbf) kernel. While this

method displays high accuracy rates, it is very time consuming, which is an important factor when comparing

it to other methods.

4.2.4 Random Forest Algorithm

We use the random forest algorithm, another type of supervised machine learning, which essentially separates

the data into multiple smaller datasets, or bags, and forms decision trees with the smaller data sets, and uses

the many decision trees to classify the input parameters, as further described below.

Decision trees are particularly appropriate for our data due to the fact that it includes many features of

varying importance, on different scales. Decision trees are useful for finding the appropriate feature to split
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on, and the value of that feature in order to minimize the cost function [13]. We use a greedy heuristic model,

which locally minimizes the cost in order to find the global optimum.

Since we have a large amount of data, we find that bagging, or the bootstrap algorithm, is the best

way to improve our accuracy rates while preventing overfitting the data set. Bagging essentially means that

the algorithm is taking random samples, creating several different classifiers, and uses the errors from one

classifier to ’learn’ from its mistakes and create future classifiers. The random forest algorithm creates many

random samples (many decision trees) and essentially averages the outcome over all of the decision trees to

come up with one final answer. We used SkLearn’s learning implementation of random forests in order to

label our records using this technique, and to predict the probabilities of delinquency and non-delinquency.

The depth of each tree is limited to 150 levels and the seed of the forests is predetermined to 27. The results

are given in Table 4.

Figure 4.2.4 shows a visual representation of the random forest algorithm. While the entire random forest

is very large, has many branches and nodes, and can be complicated to follow, we displayed one of the decision

trees in order to visualize how the architecture works. This visualization enables us to understand how some

variables specifically affect the labelling, which could be useful for further applications.

Not only are decision trees accurate, they have a relatively short running time. Not all of the features have

the same level of importance for our model; the decision tree can distinguish which features are important,

and rank them in order of importance. While other models mainly consider linear or non-linear combinations

of the features, the decision tree algorithm is able to solve the best splitting criteria: this may be a binary

split, a specific threshold, a quadratic term, or another non-linear representation of a feature. It is particularly

efficient here as, on the one hand, it accounts for highly non-linear combination and gives interpretability,

and on the other hand, it does not require dimensionality reduction, which is a time-consuming process.

4.2.5 Summary

Among the variety of models that we explored, the random forest algorithm is clearly superior in terms of

accuracy. Moreover, the random forest algorithm not only has better accuracy, but it also requires less data

pre-processing. Finally, it is easier to interpret and runs more quickly. These are the three main reasons

as to why we decide to use a random forest architecture as a preferred scoring mechanism, rather than the

FICO score or other techniques tested.

5 Results

We now turn to comparing the alternative scoring methods developed with traditional regression analysis and

machine learning techniques to standard FICO cutoffs, in terms of accuracy, default rate, and LMI inclusion.

Figure 2 displays the probabilities of non-delinquency using the random forest algorithm against the

individual’s FICO Score. There are many individuals who have a high probability of non-delinquency with

the random forest algorithm, but do not have a very high FICO score, which demonstrates the amount of

people that would have been rejected with the FICO cutoff, but accepted according to the random forest

algorithm (“false negatives”). Additionally, there are quite a few data points with high FICO scores but

do not have a very high probability with the random forest algorithm, who would be erroneously accepted

(“false positives”). Figure 2 suggests that there are a high numbers of false negatives and false positives under
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Figure 1: Visual representation of Random Forest Algorithm

traditional FICO scoring. Though the FICO Score is one variable used by the random forest algorithm, there

are many other variables as well. In order to further render the random forest algorithm comparable to the

FICO score, we compute the share of the sample approved under all possible FICO cutoffs and compare

FICO to an equivalently selective random forest algorithm.

Figure 3 shows the accuracy of the random forest algorithm relative to FICO. The false positive rate on

the graphs in the first row indicate the percentage of those accepted that are ultimately delinquent on their

payments, and the false negative rate on the graphs in the bottom row is the inverse: those rejected that

would have been current on their payments. The graphs in the left-hand column are those using models

that predict delinquencies of 30 days or more, and the graphs on the right-hand column are those using

delinquencies of 90 days or greater.

There are a number of interesting trends identified from these results. First, as discussed above, because

monthly utility payment performance histories are incomplete, those that are delinquent on their payments
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Figure 2: Random Forest Algorithm and FICO Score

Figure 3: Accuracy rates for models using 30 day and 90 day definitions of delinquency over equivalent FICO
scores
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tend to be over-represented in our restricted sample of accounts with 24 months of consecutive data. Second

are the overall trends; the false positives are all downward-sloping and the false negatives are all upward-

sloping. This agrees with our intuition. Higher FICO-equivalent cutoffs imply higher selectivity, leading to

lower delinquency rates and hence lower false positive rates. More stringent cutoffs also imply that more

qualified applicants are being rejected, driving up the share of rejected applicants that end up paying on

time, and by extension, the false negative rate.

Third is the fact that the machine learning curve has sections that are flat. This is because the random

forest algorithm optimizes the best splitting criterion for each branch of the decision tree in order to calculate

the probability of delinquency. In other words, it assigns probabilities of delinquency by putting data points

into categories according to the independent variables. This could consist of a binary variable, or it could

split based on a specific threshold of a continuous variable. For example, it may calculate the probability of

delinquency based on whether the income code is below the $110K to $120K category. Therefore, accounts

with the same values for certain categories will have the same probability of delinquency, as opposed to a

regression in which different values for the covariates necessarily leads to differences in the dependent variable.

The random forest algorithm based on a 90 day definition of delinquency therefore assigns roughly 28% of

the sample the same minimum probability of delinquency and another 1% the next lowest probability of

delinquency. Since the accuracy rates are computed such that those below a particular cutoff are rejected,

the accuracy curves move in a stepwise manner in the relevant ranges. For false negatives, since a high cutoff

means most applicants are rejected, the false negative rate tends to the sample non-delinquency rate above

an 800 FICO equivalent cutoff.

Comparing between models, we can immediately see that the random forest algorithm yields great gains

in accuracy over a strict FICO cutoff. This is especially true using the machine learning methods, when com-

pared to the regression techniques. For instance, when comparing to a FICO cutoff of 680, the random forest

algorithm developed using a 30-day delinquency definition decreases the false positive rate by 7.0 percentage

points (56.4% to 49.4%) and the false negative rate by 8.7 percentage points (8.7% to 0.0%). Similar gains

are observed using a 90-day definition of delinquency. Here, the false positive rate (i.e. delinquencies among

the approved pool) falls 2.7 percentage points (2.7% to 0.0%), while the false negative rate (i.e. rejected

applicants being non-delinquent) falls 4.2 percentage points (29.5% to 25.3%).

The higher accuracy of the 90 day definition also agrees with our intuition. If we are using delinquency

as a measure of creditworthiness, delinquency using a 30 day definition could be noisier (i.e., due to an error

such as a misplaced bill) than a 90 day delinquency, which would be more indicative of financial tendencies.

This is consistent with the much higher explanatory power of the regressions using 90 day delinquency as

the dependent variable.

The stringency of the FICO score cutoff affects the accuracy comparisons with the alternative scoring

methods, as seen in Figure 4. Here, we define a default as an account that has at any point in the 12-month

period either been transferred to a collections agency or charged off. Compared to a FICO score cutoff of

680, the default rate decreases by 1.4 percentage points (1.9% to 0.5%) using a 30 day delinquency definition

and by 1.9 percentage points (1.9% to 0.0%) using a 90 day delinquency definition.

Importantly, the random forest algorithm, when tested with both 30 and 90 day definitions of delinquency,

increase the number of LMI applicants approved, as seen in Table 5. The random forest algorithm using

a 30 day definition increases the number of LMI accounts approved by 11.4% to 14.0% depending on the

stringency, while that using a 90 day definition increases LMI customers by 1.1% to 4.2%. However, worth
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Figure 4: Default rate using 30 day and 90 day delinquency definitions over equivalent FICO scores

FICO equiv. Regression Machine Learning

30 days past due
650 -3.8% 13.4%
680 -7.3% 14.0%
700 -8.9% 11.4%

90 days past due
650 -1.0% 2.4%
680 -1.2% 4.2%
700 -1.8% 1.1%

Table 5: Change in number of LMI customers approved relative to a FICO cutoff

noting is that this is not the case with the random forest algorithm using traditional regression techniques

on a smaller set of variables, which see slight decreases in the LMI population approved. This could be due

to the limited number of variables used in the regressions, which are highly correlated with income, whereas

the random forest algorithm uses the full data set.

6 Implications for Profitability

In this section we develop a profit model to predict the expected profits of the firm when using the random

forest algorithm. For now, we assume that if a customer is offered the product, they purchase it. In this

case, expected profits depend on the rule that dictates whether the product is offered to the customer and

customers’ default rates. Let the rule dictating whether the product is offered be denoted as, I(X), where X

is a set of variables the firm uses to generate the “offering rule.” Similarly let I(Xi) represent the indicator

variable for whether consumer i is offered the product.

Consumers may default on paying for the service. For simplicity, imagine that the consumer defaults

right away and all costs are up front, so that the firm never collects any revenues and incurs all of the costs.

Let Pr(Di = 1|Xi) represent the probability consumer of type Xi defaults.

First consider the profits of a firm that are not conditional on any information in X. Profits can be
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written as:

E [πi(P,MC)] =
∑
i

[P · (1− Pr(Di))−MC(Xi)] , (9)

where P is the price and MC is the marginal cost. If this expression is positive, the firm offers the product

to everyone; if it is negative, the firm exits. If the firm offers the product then it must be the case that the

average repayment rate is greater than the ratio of marginal cost to price, given by:

1− Pr(Di) >
MC

P
. (10)

We can also rearrange this expression to yield a condition on how the average default rate relates to the

Lerner index:

Pr(Di) <
P −MC

P
. (11)

Better scoring technology allows the firm to increase profits through eliminating customers that have

negative expected profits. In particular, the firm’s first order condition will imply probability of default for

the marginal customer equals the Lerner index, given by:

Pr(Di|I(Xi)) =
P −MC

P
(12)

6.1 Empirical Implementation

Though we lack data on prices and costs, we can use the fact that the industry appears to utilize decision rules

based on a customer’s FICO score to bound the ratio of marginal cost to price. For example, an often-cited

decision rule is to offer customers the product if their FICO score is above 650. We can use this rule, and

similar rules based on FICO scores in two ways.

The first way uses the FICO cut off as a way to estimate the ratio of marginal cost to price. Notice that

if decision rule is optimal, it implies that:

Pr(Di|FICO = 650) =
P −MC

P
. (13)

Therefore, given an estimate of the expected default rate of customers with FICO scores of 650, we can

estimate the Lerner index. One estimate of the left hand side of this equation is the average default rate for

customers with FICO scores of 650. To empirically implement this we take the empirical average default rate

of customers with FICO scores of 650 ± X where we will vary X to gauge robustness. This defines the Lerner

index which we will use to gauge the benefits of improvements in credit scoring. To estimate the change in

profits from different scoring rules, we normalize price to be 1 implying marginal cost is Pr(Di|FICO = 650).

We calculate the profit for the random forest algorithm and the industry standard, using Equation 14.

E [πi(P,MC, I(Xi))] =
∑
i

P · I(Xi) · (1− Pr(Di))−MC · I(Xi). (14)

The results are displayed in Table 6.

Regardless of the FICO score cutoff, the random forest algorithm leads to an increase in profits for

the firm, which is a very significant result from our study. The random forest algorithm both benefits the
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FICO equiv. Industry Standard Random Forest Algorithm Total Percent Increase

650 $ 20,337.37 $ 27,287.22 34%
680 $ 5,393.77 $ 9,428.54 75%
700 $ 127.65 $ 2,529.99 1882%

Table 6: Profit estimates for industry standard and random forest algorithm at three different FICO cutoffs

FICO equiv π from New Customers π from Less Delinquents Total π Increase
650 $ 8,232.05 $ 4,216.79 $ 6,949.84
680 $ 5,932.67 $ 3,943.36 $4,034.77
700 $ 4,057.96 $ 3,618.99 $2,402.34

Table 7: Profit increase between Random Forest Algorithm and FICO Score attributed to New Customers
and by Preventing Delinquent Customers

customers, by accepting more LMI customers, and benefits the firms, by increasing profits. As the FICO

score becomes more stringent, the firm’s profits decrease drastically using a FICO score cutoff, while the

decrease is much more modest using comparatively stringent cutoffs using the random forest model. Hence,

the percentage increase in profits by moving from the industry standard to the random forest algorithm

increases with stringency. However, as shown in Table 7, the dollar value of the increase in profits from the

random forest algorithm relative to a FICO score cutoff decreases as the FICO score cutoff becomes more

stringent, because the firm is accepting less customers overall. We can decompose the increase in profits from

the random forest algorithm to two sources. First is the increase in profits due to accepting new customers

who would have been denied under the FICO score cutoff, or a decrease in false negatives (“π from New

Customers). Second is a reduction in losses from rejecting those who are accepted under the FICO Score

cutoff but whom the random forest algorithm identifies as high-risk, or a decrease in false positives (“π from

Less Delinquents”). Note that these two columns do not sum up to the value in Total π Increase because

the firm that uses the random forest algorithm could still lose profits by denying access to a customer that

would have brought them profits, or by accepting some delinquents, who would have been correctly classified

under a FICO score cutoff. Overall, however, the random forest algorithm leads to an increase in profits

when compared to the FICO score cutoff, regardless of the stringency of the industry standard, due to the

overall decrease in false positives and false negatives.

7 Conclusion and Future Implications

In this paper, we develop an alternative score based on a more accurate model of utility bill payment

performance that would be more inclusive of LMI households than a traditional credit score. We do so

using a variety of traditional regression approaches, as well as machine learning techniques, on a large

data set from a credit reporting agency (CRA) to develop a model that predicts the probability of non-

delinquency. The final alternative scoring mechanism is based on a random forest algorithm, because it has

the highest accuracy rates, a reasonable computation time, and a more comprehensive interpretability. We

find that even a traditional regression analysis using a small number of variables specific to utility repayment

performance greatly increases accuracy and LMI inclusivity relative to FICO, and that using machine learning

techniques enhances this further. Our preferred random forest algorithm increases the number of LMI
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applicants approved by 1.1% to 4.2%, while decreasing the default rate by 1.4 to 1.9 percentage points

depending on the stringency of the cutoff. Our analysis shows that it is possible to extend solar to a larger

number of qualified applicants with lower or no credit scores while decreasing default risk, thus representing

an untapped, low-risk market segment.
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